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Abstract

Using a toroidal coordinate system constructed from a framework of rotational quadratic-flux-minimizing surfaces with
rational rotation number, an integrable magnetic field is constructed that is nearby a given non-integrable field. Straight-
field-line coordinates for the constructed integrable magnetic field are computed. By considering the original magnetic field
to be obtainable by a small perturbation to the integrable magnetic field, island widths can be estimated analytically. Since
quadratic-flux-minimizing surfaces coincide with flux surfaces when they exist, the constructed coordinates may be designed
to reduce to straight-field-line coordinates for the given magnetic field in regions of good magnetic surfaces. The coordinates
are illustrated using a magnetic field from the PIES code. c© 1998 Elsevier Science B.V.

1. Introduction

For the containment of plasma by toroidal magnetic
fields, it is essential that the magnetic field be as close
as possible to integrable. That is, that the magnetic
field lines lie approximately on nested toroidal flux
surfaces [1]. This is because, to lowest order in Lar-
mor radius, particle orbits are tied to magnetic field
lines. In such a case, one may conveniently describe
particle trajectories using straight-field-line flux coor-
dinates [2,3].
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A completely integrable magnetic field is in princi-
ple only possible for systems with a continuous sym-
metry, and in practice errors and three-dimensional
effects will result in islands and chaotic regions be-
ing formed. Nevertheless, even for such devices as
stellarators, the concept of flux surfaces and straight-
field-line magnetic coordinates is useful as an approxi-
mation, because these fully three-dimensional devices
are carefully designed so as to minimize islands and
chaotic regions in the vacuum field, either by visually
examining Poincaré surfaces of section, or by estimat-
ing island strengths quantitatively (e.g., by using the
residue method [4]). Alternatively, islands of a given
periodicity and phase may be introduced in the vac-
uum field [5], so as to produce smaller islands at finite
pressure due to self-healing.

Thus, we need to consider magnetic fields that are
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non-integrable, but close to integrable. For practical
purposes it is often sufficient to proceed as if the field
were exactly integrable, and to attempt to construct
straight-field-line coordinates for the non-integrable
field on the basis of this assumption. Although islands
and straight-field-line coordinates are in principle in-
compatible, in practice islands are very small except
close to the larger island chains and the assumption of
nested flux surfaces and the existence of straight-field-
line coordinates is an adequate approximation [6].

However, this approach must break down near low
order island chains, and is also unsatisfactory from a
numerical analysis point of view because it does not
provide a precise criterion for its applicability. Since
field-line flow is a Hamiltonian system, one natural
approach to developing a more systematic algorithm
is to approach the problem from the point of view
of Hamiltonian perturbation theory [7], in which the
Hamiltonian is assumed to be decomposed into an in-
tegrable part plus a small perturbation. Then action-
angle coordinates are constructed for the underlying
integrable Hamiltonian, and, e.g., the widths of is-
lands in the total system are calculated perturbatively.
The concept of flux surface in magnetic field line flow
corresponds precisely with that of invariant torus in
Hamiltonian dynamical systems theory, so that another
benefit of the “integrable plus perturbation” decom-
position is that Kolmogorov1Arnol’d1Moser (KAM)
theory can be brought to bear on the question of exis-
tence of flux surfaces.

However, a major problem with implementing this
program in the case of stellarator magnetic fields is
that the underlying integrable field is not given be-
forehand. Thus, the first aim of the present paper is to
present an algorithm for finding a suitable underlying
integrable field close to any given non-integrable field.
The second aim is to construct straight-field-line coor-
dinates for the neighbouring integrable field in such a
way that they reduce to those constructed by the meth-
ods used presently in region of good flux surfaces, for
example that used in PIES [6] developed in Ref. [8].

The construction is based upon the concept of
quadratic-flux-minimizing surfaces [9,10]. These are
surfaces that minimize a suitable functional involving
the normal component of the magnetic field with re-
spect to a trial surface. In particular, if a flux surface
exists, then it automatically minimizes the quadratic
flux functional because the normal component every-

where vanishes on the surface. These surfaces can
also be shown to minimize the square of the functional
derivative of the field-line action, which vanishes on
dynamically allowed paths.

The algorithm may be summarized as follows: (1)
Construct a curvilinear toroidal coordinate system
ρ, θ, φ, where ρ is a generalized radial coordinate
(zero on the magnetic axis, but otherwise arbitrary),
θ is a general poloidal angle and φ is a toroidal angle
(e.g., the normal geometric one used in cylindrical
or spherical coordinates); (2) Choose a set of K ra-
tional numbers { ι-k|k = 1, 2, . . . , K} within the range
of rotational transforms present in the plasma; (3)
Construct a set of quadratic-flux-minimizing surfaces
{ρ = ρk(sk, θ, φ)} through the islands corresponding
to the rotational transforms { ι-k}; (4) Interpolate to
provide a continuous transformation ρ = ρ(s, θ, φ)
such that each case s = sk = const defines one of the
quadratic-flux-minimizing surfaces constructed in the
previous step; (5) Find the contravariant representa-
tion ofB in the s, θ, φ coordinate system; (6) Find the
neighbouring integrable field B̄(s, θ, φ); (7) Con-
struct straight-field-line coordinates (s, θ0, φ) for B̄;
(8) Construct the field-line Hamiltonian χ(s, θ0, φ)
for B.

Section 2 describes the construction of quadratic-
flux-minimizing surfaces and the intermediate coordi-
nate system s, θ, φ (Steps (1)1(4) above). Section 3
describes the alterations to the magnetic field required
to construct an integrable magnetic field with flux sur-
faces corresponding to the quadratic-flux-minimizing
surfaces (Steps (5), (6)), while Section 4 discusses
the implementation of this construction using Fourier
analysis, the construction of straight-field-line coordi-
nates and the field-line Hamiltonian (Steps (7), (8)).
Results using a typical magnetic field with islands
from the PIES code [11] are presented in Section 5.

2. Quadratic flux minimizing coordinates

We begin with a representation of the magnetic field
in toroidal coordinates and define the quadratic flux
functional. Given fieldB in coordinates (ρ, θ, φ), with
the contravariant components expressed as

Bρ =
∑
n,m

Bρn,m(ρ) sin(nθ −mφ) , (1)
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Bθ =
∑
n,m

Bθn,m(ρ) cos(nθ −mφ) , (2)

Bφ =
∑
n,m

Bφn,m(ρ) cos(nθ −mφ) , (3)

and the transformation to cylindrical coordinates
(R,φ, z) as

R = Rmaj +
∑
n,m

xn,m(ρ) cos(nθ −mφ) ,

z =
∑
n,m

yn,m(ρ) sin(nθ −mφ) . (4)

This representation is consistent with the stellarator
symmetry often used and discussed in detail in Ref.
[12]. The Jacobian of the (ρ, θ, φ) coordinates,Jρθφ ,
is given by Jρθφ = (∂θR ∂ρz − ∂ρR ∂θz)R.

Quadratic-flux-minimizing surfaces are defined
[9,10] as the toroidal surfaces that minimize the
quadratic flux ϕ2,

ϕ2 =
∫
Γ

B2
n

2Cn
dσ , (5)

where, for any vector field, the normal component
Fn ≡ F · n, with n being the unit normal to the trial
surface Γ. In the above, C is an arbitrary divergence-
free field, which we choose to be C = ∇θ ×∇φ (a
choice which is motivated by the action interpretation
of the quadratic flux [10]). On allowing the surface
to vary, we obtain the Euler1Lagrange equation for the
extremal surface,

Bν · ∇ν = 0 , (6)

where ν ≡ Bn/Cn and Bν ≡ B − νC is called the
pseudo magnetic field. In the action interpretation the
parameter ν arises naturally as the functional deriva-
tive of the action,

∮
A · dl, defined on a closed loop

and thus we call it the action gradient.
Eq. (6) is a statement that ν is constant on a pseudo-

field line. By focusing attention on closed pseudo-
field lines, which are disjoint, we allow ν to have a
different value on each line and thus can construct a
toroidal quadratic flux minimizing surface by locating
the periodic orbits of a continuous family of pseudo-
field-line flows parameterized by ν (or equivalently,
by the starting value of θ at φ = 0). The additional
field νC may be thought of as a correction to the

real magnetic field chosen so as to cancel the radial
component, thus producing periodic orbits at any given
θ. Locating each pseudo orbit is a two-dimensional
search 1 in ν and a suitable radial variable defining the
initial position of the orbit (θ and φ = 0 being held
fixed).

Such periodic “pseudo” orbits are true closed mag-
netic field lines when the action gradient ν vanishes (a
consequence of Hamilton’s principle). In an integrable
field, ν = 0 for the entire family of periodic pseudo
orbits making up the given rational rotational trans-
form flux surface. In a generic, non-integrable system
it is true only for the discrete set of action minimiz-
ing and minimax periodic orbits (X and O points in a
Poincaré section) associated with the island chains.

As shown by Hudson and Dewar [5], ν provides
an efficient measure of the size and phase of island
chains. They introduced a method enabling the islands
present in vacuum magnetic fields of stellarators to be
manipulated. This technique allows vacuum configu-
rations to be found with given islands set to arbitrary
size and phase, and in particular allows islands to be
removed without significantly altering the rotational
transform profile.

Conversely, on a “good” magnetic surface, where
the island width is already very small, ν ≈ 0 for all
pseudo orbits and the ν search for a periodic pseudo
orbit converges, to within any reasonable tolerance, in
one iteration. Thus the search for each periodic orbit is
effectively one-dimensional in regions where the sur-
faces are good. Hence the quadratic-flux-minimizing
pseudo-orbit method does not in practice lead to a
greater computational overhead than other field-line-
tracing methods for constructing approximate mag-
netic surfaces in the good cases, while continuing to
work efficiently and robustly when the surfaces are
bad.

Having constructed a set of quadratic-flux-
minimizing surfaces, {ρ = ρk(θ, φ)}, we label each
surface by the value, sk, of a coordinate s, which
may be the toroidal flux, or any other good radial
coordinate. Then we Fourier analyze in θ and φ, so
that ρk =

∑
nm ρnm(sk) cos(nφ − mθ). We define

a coordinate transformation from ρ, θ, φ space to
s, θ, φ space by interpolating the Fourier coefficients
ρnm(sk) in the new variable s using cubic splines.
With the transformation ρ = ρ(s, θ, φ) thus deter-
mined, a standard vector transformation provides the
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new contravariant radial component Bs ≡ B ·∇s, the
toroidal and poloidal components Bφ ≡ B · ∇φ and
Bθ ≡ B · ∇θ remaining invariant.

3. Construction of integrable magnetic field

Note that, by construction, ν = JsθφBs on each
quadratic-flux-minimizing surface s = sk, where
Jsθφ ≡ (∂θR ∂sz − ∂sR ∂θz)R ≡ 1/C · ∇s is the
Jacobian in the new coordinates. It is thus natural
to extend the definition of ν to the whole domain
by defining it by ν ≡ JsθφBs everywhere. Then the
divergence-free condition on B gives

∂sν + ∂θ(JsθφBθ) + ∂φ(JsθφBφ) = 0 . (7)

An integrable magnetic field, B̄, with invariant sur-
faces coinciding with the tori s = const, would have
B̄s ≡ 0. We construct such a field from B by seek-
ing a divergence-free correction field, δB, such that
JsθφδBs = −ν. If we can find such a field, then the
total field B̄ ≡ B+ δB will automatically satisfy the
integrability condition JsθφB̄s ≡ 0.

An equation for δB is provided by the divergence-
free condition

∂θ(JsθφδBθ) + ∂φ(JsθφδBφ) = ∂sν . (8)

Since this is one equation for two unknowns, there is
considerable arbitrariness in choosing δBθ and δBφ ,
but any convenient choice will be satisfactory for
demonstrating the existence.

Unlike Eq. (7), where the two large terms in Bθ

and Bφ must almost cancel to balance the small term
in ν, we wish both δBθ and δBφ to be small, O(ν).
We proceed by choosing JsθφδBφ to be constant with
respect to θ and such as to balance the θ-average of
∂sν,

∂φ(JsθφδBφ) = 〈∂sν〉 , (9)

where 〈 〉 denotes averaging with respect to θ over
the interval 0 to 2π. Then Eq. (8) becomes

∂θ(JsθφδBθ) = ∂sν − 〈∂sν〉 , (10)

which may be integrated with respect to θ to produce
a periodic solution because the choice equation (9)
has been made so as to satisfy the solubility condition

that the right-hand side of Eq. (10) has zero average
with respect to θ. Of course one also needs to ask
whether Eq. (9) can be integrated to give a periodic
δBφ , which requires the condition 〈〈∂sν〉〉 = 0 to be
satisfied, where 〈〈 〉〉 denotes a double average with
respect to both θ and φ. Inspection of Eq. (7) shows
that ∂sν must satisfy this condition automatically.

4. Fourier implementation

To implement the above construction in practice,
we first Fourier analyze

ν =
∑
n,m

νn,m(s) sin(nφ −mθ) , (11)

JsθφBθ =
∑
n,m

(JsθφBθ)n,m(s) cos(nφ−mθ) , (12)

JsθφBφ =
∑
n,m

(JsθφBφ)n,m(s) cos(nφ −mθ) .

(13)

Eqs. (9) and (10) then give(
(JsθφδBθ)nm, (JsθφδBφ)nm

)
=


(0, 0) , n = 0 , m = 0 ,
(∂sνn,m/m, 0) , n = 0 , m3 0 ,
(0,−∂sνn,m/n) , n3 0 , m = 0 ,
(∂sνn,m/m, 0) , n3 0 , m3 0 .

(14)

Then B̄ = (Bθ + δBθ)eθ + (Bφ + δBφ)eφ is a
divergence-free field with flux surfaces s. As the
surfaces s are those that minimize the quadratic flux
functional at as many selected surfaces as desired,
B̄ is an integrable field “as close as possible” to the
given nearly integrable field. Note that additional
freedom exists in the construction of the integrable
field. Given that ∇ · B̄ = 0, and B̄ · ∇s = 0, the
poloidal and toroidal components may be deformed
and a divergence free field maintained provided
m(JsθφB̄θ)nm = n(JsθφB̄φ)nm. There is no freedom
for the modes with either n or m being zero.
B̄ may be written in the Clebsch form [3, pp. 1161

120] B̄ =∇s×∇λ, where λ(s, θ, φ) may quite gen-
erally be written λ = ṗt(s)θ − ṗp(s)φ + λ̃(s, θ, φ),
where pt,pp are the toroidal and poloidal flux
functions and λ̃ is periodic in θ and φ, λ̃ =∑
λ̃nm(s) sin(nφ−mθ). The function λ̃ is determined
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Fig. 1. (a, top left) Poincaré plot in arbitrary background coordinates and surfaces chosen for coordinate basis. (b, top right) Coordinate
grid constructed from surfaces shown in 1a. (c, bottom left) The same Poincaré plot plotted in the new coordinates. (d, bottom right)
Surfaces chosen for coordinate basis and new angle grid.

from ∂θλ̃ = JsθφB̄φ− ṗt and ∂φλ̃ = ṗp−JsθφB̄θ. Av-
eraging the first of these equations with respect to θ
we see that ṗt ≡ 〈Jsθφ〉, which implies that 〈JsθφB̄φ〉
is independent of φ (i.e., (JsθφB̄φ)n0 = 0 for n3 0).
This is a consequence of conservation of flux through
a narrow poloidal ribbon between surfaces s and s+ds.
Similarly, from the second equation, (JsθφB̄θ)0m = 0
for m 3 0. The rotational transform obeys [3, p. 83,
(4.8.4a)] ṗp = ṗt ι-(s) where ι- is the rotational
transform. Thus ι- = (JsθφB̄θ)0,0/(JsθφB̄φ)0,0.

Rather than integrate the o.d.e.’s for the solution of
λ̃, we may utilize the Fourier representation to write

λ̃nm =

{
−(JsθφB̄φ)nm/m , m3 0 ,
−(JsθφB̄θ)nm/n , n3 0 ,

(15)

where the (0, 0) mode can be ignored. The straight-
field-line angle for the integrable field is then obtained
by absorbing the periodic function λ̃ into the poloidal
angle θ0 = θ+ λ̃/ṗt. The original magnetic field may
be written in the straight-field-line coordinates for the
constructed integrable magnetic field by a standard
vector transformation and the new Jacobian Jsθ0φ =

Jsθφ∂θ0θ is obtained.
The coordinates thus constructed enable the original

magnetic field to be expressed in terms of a canonical,
nearly integrable, field line Hamiltonian, χ, such that

B =∇s×∇θ0 +∇φ ×∇χ(s, θ0, φ) , (16)

where χ = pp(s)+
∑

nm χnm(s) cos(nφ−mθ0). The
Fourier components of the magnetic field in (s, θ0, φ)
coordinates are simply related to the Fourier compo-
nents of the field line Hamiltonian through

(Jsθ0φB
s)nm = −mχnm ,

(Jsθ0φB
θ0 )nm = χ̇nm . (17)

It is convenient to use the field line Hamiltonian repre-
sentation, as this form guarantees the divergence free
property of the magnetic field. The field line Hamil-
tonian provides all information regarding the mag-
netic field. The (n,m) island width ∆nm may be es-
timated in the thin island approximation using ∆nm =
(χnm/ ι-

′
nm)1/2 whereχnm and ι-′nm are the (n,m) mode

amplitude and the shear at the resonant surface, re-
spectively.
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5. Application and discussion

A trial magnetic field is obtained from PIES [11].
To construct straight-field-line coordinates for the as-
sumed underlying integrable magnetic field, a small
set of low order rational rotational transform surfaces
is selected. These pass directly through the major res-
onances and are likely to be least deformed by the as-
sumed small perturbation. A Poincaré plot of the sur-
faces chosen and the major island chains is shown in
Fig. 1a. The constructed coordinate grid is shown in
Fig. 1b. The Poincaré section in the new coordinates
is shown in Fig. 1c.

To construct straight-field-line coordinates for the
given magnetic field, as much as that is possible given
the islands, we may choose a set of high order rational
rotational transform surfaces that lie just outside the
largest separatrices. A Poincaré plot showing the is-
land chains and the surfaces chosen as the coordinate
foundation and the constructed angle grid is given in
Fig. 1d. Note that the closer the quadratic flux surfaces
trace out the separatrices, the more singular the coor-
dinates constructed become. This is due to the fact that
straight-field-line coordinates are not consistent with
the existence of separatrices.

The surfaces may be chosen such that the periodici-
ties approximate noble irrationals using truncations of
the continued fraction representations of these num-
bers. This being the case, the quadratic flux minimiz-
ing surfaces will approximate KAM surfaces and en-
able a partition of phase space into chaotic and regular
regions. Chaos will help to lessen the singularity of
the straight-field-line coordinates near separatrices by
providing a limit on how close the separatrix can be
approached.

The coordinate construction is flexible and robust.
The type of coordinates constructed depend solely on
the choice of the rationals that identify the quadratic
flux minimizing surfaces to be used as the coordinate
framework. Various types of coordinates may be con-
structed. For example, straight-field-line coordinates

for a nearby integrable magnetic field or straight-field-
line coordinates for the given magnetic field in regions
of good surfaces. With a careful choice of surfaces that
approximate KAM surfaces, coordinates that partition
regions of chaos also may be constructed. Also pro-
vided by the method is the location of X and O points
of the island chains, and the field line Hamiltonian in
a convenient nearly integrable form. No assumptions
need be made regarding the structure of the magnetic
field. Finally, the procedure is applicable to nearly in-
tegrable Hamiltonian systems, such as in accelerator
theory and celestial dynamics [13].
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